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Automated Segmentation of Liver and Liver Tumors with
SwinUNETR and UNET Neural Networks on "®F-FDG PET/CT
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Tumorlerin Otomatik Segmentasyonu
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Abstract

Obijectives: To develop and evaluate automated segmentation models for the liver and hepatic tumors on '®F-fluorodeoxyglucose positron
emission tomography/computed tomography (*F-FDG PET/CT) using SWinUNETR and residual UNET architectures, and to assess their accuracy
in complex clinical cases.

Methods: In this single-center retrospective study, 100 patients (48 males, 52 females; mean age 61+14 years) with '®F-FDG-avid hepatic lesions
from various primary malignancies were included. Liver segmentation was performed on non-contrast CT images using pairs of SwinUNETR
and residual UNET models, and tumor segmentation was performed on masked PET images using separately trained pair of SwinUNETR and
residual UNET model. Model performance was evaluated using the dice similarity coefficient (DSC), volumetric bias, and Bland-Altman analysis for
metabolic tumor volume (MTV) and total lesion glycolysis (TLG).

Results: For liver segmentation, SwinUNETR achieved a median DSC of 97.59% (range: 95.41-98.93%) with a median volumetric bias of -0.94%
(LoA: -3.76% to +0.50%), while residual UNET achieved a median DSC of 97.85% (range: 94.81-98.80%) with a median volumetric bias of
0.34% (LoA: -2.63% to +1.16%). For tumor segmentation, SWinUNETR achieved a median DSC of 92.62% (range: 80.75-97.46%), an MTV bias
of -8.60% (LoA: -31.62% to +1.21%), and a TLG bias of -6.40% (LoA: -25.58% to +0.76%). Residual UNET achieved a median DSC of 93.07%
(range: 80.74-98.18%), MTV bias of -4.33% (LoA: -24.36% to +10.12%), and TLG bias of -11.10% (LoA: -30.8% to +4.52%). Most MTV and TLG
measurements were within +10% of reference values.

Conclusion: Both SWinUNETR and Residual UNET achieved excellent liver sesgmentation accuracy and clinically acceptable tumor segmentation
performance on "8F-FDG PET/CT, with SWinUNETR showing slightly better performance in liver volumetric measurements. These open-source
models could be integrated into clinical workflows to automate segmentation tasks, facilitate treatment planning for liver-directed therapies, and
support reproducible quantitative imaging analyses.
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Oz
Amag: Bu calismanin amac SwinUNETR ve Residual UNET mimarilerini kullanarak '8F-florodeoksiglukoz pozitron emisyon tomografisi/bilgisayarl

tomografinin ("F-FDG PET/BT) gorlintulerinde karaciger ve hepatik tiimarlerin otomatik segmentasyon modellerini gelistirmek ve degerlendirmek;
ayrica bu modellerin karmasik klinik olgulardaki dogrulugunu incelemek olarak belirlenmistir.
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Yontem: Tek merkezli, retrospektif bu calismaya, cesitli primer ve metastatik "®F-FDG tutulumu gdsteren karaciger tiimorleri bulunan 100 hasta
(48 erkek, 52 kadin; ortalama yas 61+14 yil) dahil edildi. Karaciger segmentasyonu kontrastsiz BT gorintulerinde, timor segmentasyonu ise
maskeleme yapilmis PET gorintulerinde gerceklestirildi. SwinUNETR ve Residual UNET modelleri karaciger ve timor segmentasyonu igin ayri ayri
egitildi. Model performansi dice benzerlik katsayisi (DSC), volumetrik bias ve metabolik timaér hacmi (MTV) ile total lezyon glikolizi (TLG) degerleri
Bland-Altman analizi ile karsilastirildi.

Bulgular: Karaciger segmentasyonunda SwinUNETR modeli ile %97,59 (aralik: %95,41-98,93) medyan DSC ve -%0,94 (LoA: -%3,76 ila +%0,50)
medyan volumetrik bias elde edilmistir. Residual UNET modelinde ise %97,85 (aralik: %94,81-98,80) medyan DSC ve -%0,34 (LoA: -%2,63 ila
+%1,16) bias degerleri izlenmistir. TUmor segmentasyonunda SwinUNETR modelinde %92,62 (aralik: %80,75-97,46) medyan DSC, -%8,60 MTV
bias (LoA: %31,62 ila +%1,21) ve -%6,40 TLG bias (LoA: -%25,58 ila +%0,76) degerleri gozlenmistir. Residual UNET modeli ise %93,07 (aralik:
%80,74-98,18) medyan DSC, -%4,33 MTV bias (LoA: -%24,36 ila +%10,12) ve -%11,10 TLG bias (LoA: -%30,8 ila +%4,52) degerlerine sahip
olarak izlenmistir. MTV ve TLG 6lclmlerinin cogu referans degerlerin +%10 araliginda yer aldi.

Sonug: SWinUNETR ve Residual UNET modelleri, '8F-FDG PET/BT gorintilerinde ylksek derecede karaciger segmentasyon dogrulugu ve klinik
olarak kabul edilebilir timdr segmentasyonu performansi saglamistir. SWinUNETR modeli ise karaciger segmentasyonunda Residual UNET
modeline gore daha iyi sonuc vermistir. Bu acik kaynakli modeller, klinik is akislarina entegre edilerek segmentasyon goérevlerini otomatiklestirebilir,
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karacigere yonelik tedavi planlamasini kolaylastirabilir ve tekrarlanabilir nicel goriintileme analizlerini destekleyebilir.
Anahtar kelimeler: Derin 6grenme, SWinUNETR, pozitron emisyon tomografisi, molekiler gorintileme, florodeoksiglikoz, gorinti isleme

Introduction

Primary liver malignancies, particularly hepatocellular
carcinoma (HCC), represent a major global health burden,
ranking as one of the leading causes of cancer-related
mortality worldwide (1). In addition to primary tumors,
the liver is a frequent site of metastatic spread from
various malignancies, including colorectal, breast, and
pancreatic cancers (2,3,4). Early detection and accurate
characterization of hepatic lesions are essential, as the
prognosis of patients with liver involvement depends
heavily on timely diagnosis and appropriate therapeutic
intervention. Proper treatment planning—whether through
surgical resection, transplantation, systemic therapy,
or locoregional approaches—can significantly improve
survival outcomes in both primary and secondary hepatic
malignancies.

Accurate delineation of the liver and its tumors plays a
pivotal role in several advanced treatment strategies. For
therapies such as selective internal radiation therapy (SIRT)
(SIRT, also known as radioembolization) and stereotactic
body radiotherapy, precise volumetric and spatial
characterization of tumor burden is required to optimize
dosimetry, minimize healthy tissue damage, and maximize
therapeutic efficacy (5-7). Furthermore, quantitative
imaging biomarkers that have been shown to be reliable
prognostic factors after radioembolization, such as
metabolic tumor volume (MTV) and total lesion glycolysis
(TLG) on 'Ffluorodeoxyglucose positron  emission
tomography/computed tomography ("®F-FDG PET/CT), rely
on precise segmentation to ensure reproducibility across
clinical and research settings (8,9).

Over the past decade, deep learning—based methods
have revolutionized medical image segmentation, with

"

convolutional neural networks (CNNs) and, more recently,
transformer-based architectures delivering state-of-the-
art performance (10-12). Tools such as TotalSegmentator
have demonstrated the potential of generalized pre-
trained models to achieve high accuracy in multi-organ
segmentation tasks (13). In liver imaging, these approaches
have significantly reduced the need for labor-intensive
manual contouring, thus accelerating clinical workflows
and enabling large-scale quantitative studies.

The SwinUNETR architecture, a transformer-based model
incorporating hierarchical shifted-window self-attention
and UNet-style encoder-decoder design, has shown strong
performance in complex 3D segmentation tasks (10,11). By
leveraging global contextual information while preserving
fine anatomical details, SwinUNETR has the potential
to outperform conventional CNN-based architectures in
challenging segmentation scenarios. In clinical reality,
diseased livers often present with anatomical distortions
caused by ascites, postoperative changes, large tumor
burdens, or extensive metastatic infiltration. Such conditions
may degrade the performance of general-purpose
segmentation models, underscoring the need for disease-
specific model training tailored to these complex cases.

Previous studies onliver sesgmentation using neural networks
have generally employed fully convolutional architectures
such as Residual UNET and have been performed on
contrast-enhanced CT images. For example, in a recent
study, Yashaswini et al. (14) evaluated the performance of
Residual UNET models for liver and tumor segmentation
on CT imaging and reported a Dice score of 91.44% for
liver segmentation. Additionally, several other studies have
investigated liver and tumor segmentation using CNNs
(15,16). However, the utility and potential superiority of
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SwinUNETR for liver and tumor segmentation, compared
to Residual UNET models, have not yet been explored.
Furthermore, although there are multiple studies on tumor
segmentation in PET imaging, research combining PET and
CT imaging for segmentation remains rare.

In this study, we aimed to develop and evaluate automated
segmentation models, using both SwinUNETR-V2 and
residual U-Net architectures, to segment the liver and
hepatic tumors from'™F-FDG PET/CT images. Our goal
was to assess their accuracy in the context of challenging
clinical cases and to explore the feasibility of disease-
specific segmentation models that can maintain robust
performance in anatomically complex livers. The developed
models are also intended for use in conjunction with the
previously developed radioembolization dosimetry module
for 3D Slicer (17).

Materials and Methods

Patients and Study Design

This single-center, retrospective study included patients
with "8F-FDG-avid hepatic lesions from various malignancies
who underwent "F-FDG PET/CT imaging from January
2025 to July 2025. Written informed consent was obtained
from all patients before imaging. Exclusion criteria were:
(1) significant respiratory artefacts; (2) artefacts secondary
to patient motion; and (3) artefacts secondary to metallic
objects or prostheses on CT imaging. The study was
approved by the Ethics Committee of Harran University
(approval no: HRU-25.11.02, date: 16.06.2025), with
additional approval from the institutional review board.
The developed segmentation models and training scripts
(18,19), images of four patients for testing (20), and the
SlicerAether segmentation module for 3D Slicer (18) are
available in public repositories.

8F-FDG PET/CT Protocol and Preprocessing of the
Data

Imaging was performed using a Siemens Biograph
Horizon™ 4R system. Patients fasted for at least 6 hours
before imaging, and blood glucose levels were checked
prior to the scan. Those with a blood glucose level above
200 mg/dL did not undergo scanning. Images were
acquired from the vertex to the proximal femur with the
patient in the supine position. Whole-body "8F-FDG PET/
CT imaging was performed approximately 1 h after an
intravenous injection of "®F-FDG at 3.7 MBqg/kg. For PET/
CT imaging, PET images were acquired for 90 seconds per
bed position and were reconstructed using attenuation
correction measured from non-contrast CT images. For
reconstruction of PET images, the TrueX+TOF (UltraHD-
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PET) algorithm was used with 4 iterations and 10 subsets,
a 5-mm post-processing Gaussian filter, and a 180 x 180
matrix. The resulting voxel size was 4.11392 x 4.11392 x
1.50 mm. All PET images were converted to standardized
uptake values (SUVs), normalized to body weight, and
resampled to an isotropic voxel size of 2 x 2 x 2 mm prior
to training. No further normalization other than conversion
to SUV values was used.

Non-contrast-enhanced CT images were acquired at 130 kV
with a variable tube current modulated according to patient
weight using the CareDose4D (Siemens Healthineers) and
reconstructed with a 512 x 512 matrix. The resulting
voxel size was 1.367 x 1.367 x 1.50 mm. Similarly, the CT
images were resampled to an isotropic voxel size of 2x2x2
mm before training. For CT images, voxel intensities were
normalized using a linear scaling transformation in which
values between -135 hounsfield unit (HU) and +215 HU
were mapped to the range 0.0-10.0; values outside this
range were clipped to the nearest boundary.

For preprocessing, PET and CT volumes were cropped to a
bounding box encompassing the upper abdomen to remove
empty voxels and reduce computational load. The liver was
manually segmented on CT images for all patients, and the
resulting liver masks were used to zero out voxels outside
the liver in the PET volumes. A spherical reference volume
of interest was placed in the non-tumoral liver parenchyma,
and a threshold equal to 1.5 times the liver reference SUV__
was used for manual tumor segmentation. Afterwards,
the CT images, masked PET images, and liver and tumor
segmentation masks were saved for further processing.

Training volumes were split into overlapping 96 x 96 x
96-voxel patches, yielding 680 training pairs. No patching
was applied during testing; instead, a sliding-window
inference with the same patch size was used. Preprocessing
was performed using 3D Slicer (version 5.9) and custom
Python scripts (21,22).

Model Architecture Loss Function and Training
Parameters

A volumetric segmentation model based on the SwinUNETR
architecture, originally proposed by Hatamizadeh et al. (10)
and later extended by He et al. (11) as SwinUNETR-V2,
was implemented. SwinUNETR-V2 integrates the Swin
Transformer with a UNET-style encoder-decoder and
residual convolutional blocks at the start of each Swin
stage, enabling high representational capacity for 3D
medical images (10,23). In this study, one SwinUNETR-V2
model was trained to segment the liver in CT images, and
another model with identical parameters was trained to
segment tumors in masked PET images. Both models used
a feature size of 24, transformer depths of (2, 2, 2, 2),
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attention heads of (3, 6, 12, 24), a dropout path rate of
0.0, input volumes of 96 x 96 x 96 voxels, and gradient
checkpointing to reduce memory usage. Each model had
approximately 18.3 million trainable parameters and was
trained with a batch size of 1.

We also utilized UNET-structured models with residual
blocks for comparison with SwinUNETR models (12). The
3D residual UNET model was configured with an input
batch size of 4 and a total of 76.8M trainable parameters.
This network employed five resolution levels with channel
sizes of 64, 128, 256, 512, and 1024; two residual units
per level; strides of (2, 2, 2, 2) for down- and up-sampling;
and 3 x 3 x 3 convolution kernels.

The implementation was based on the PyTorch and MONAI
frameworks and executed on a graphics processing unit
(GPU)-enabled system, allowing efficient handling of 3D
volumetric data (20,21,22). The GPU and central processing
unit models used for training were an NVIDIA GeForce RTX
4060 with 8 GB of VRAM and an Intel Core i3-9100F (3.60
GHz). The Dice similarity coefficient (DSC) was calculated
as follows (24,25,26):

2X1XnY]|

Dice score =
1X|+ Y]

Here, X denotes the set of voxels in the predicted
segmentation; Y denotes the set of voxels in the ground-
truth segmentation; and | X N Y| denotes the number of
overlapping voxels. Dice loss was defined as follows:

Dice loss = 1 - Dice score.

In addition, cross-entropy loss values were calculated, and
a hybrid loss function was used for training:

Training Loss Function = 0.5 x Dice Loss + 0.5 x
Cross Entropy Loss

Testing of the Models and Performance Evaluation
Metrics

Atotal of four models were developed for the segmentation
of the liver and liver lesions. For liver segmentation, the
reference liver volume, the predicted liver volume, and
their intersection were computed. Model performance
was assessed using the DSC, where a value of 1 indicates
perfect overlap between the predicted and reference
segmentation, and a value of 0 indicates no overlap.

For tumor segmentation on PET images, the DSC was also
used as the primary evaluation metric. In addition, MTV
and TLG were calculated for both the reference and model-
predicted segmentations. TLG was defined as:

TLG = MTV x SUV

mean

13

Statistical Analysis

Descriptive statistics were reported as counts and percentages
for categorical variables, and as mean + standard deviation
and median (range) for continuous variables. A p-value less
than 0.05 was considered statistically significant for all
analyses. Dice scores obtained from the SwinUNETR and
residual UNET models were compared using the Wilcoxon
signed-rank test.

For tumor segmentation, predicted and reference MTV
and TLG values were compared using Bland-Altman plots.
The bias, along with 95% confidence intervals (Cls) and
limits of agreement (LoA), was calculated for both models.
All statistical analyses were performed using RStudio
(version 2025.05.1), IBM SPSS Statistics (version 27), and
BA-plotteR (27,28).

Results

Patients and General Characteristics

A total of 110 patients were initially considered for
inclusion. Six patients were excluded due to respiratory
artifacts, and four were excluded due to metallic artifacts
in the upper abdominal CT images. Consequently, 100
patients (48 males, 52 females) with various malignancies
were included in the study. The mean age was 61+14
years. The most common primary malignancies were
breast cancer (28%), colorectal carcinoma (23%), lung
cancer (13%), gastric cancer (8%), and pancreatic cancer
(6%). The remaining patients had HCC, lymphoma, ovarian
cancer, esophageal cancer, gallbladder cancer, cervical
cancer, soft tissue sarcoma, tumors of unknown origin, or
thyroid cancer. More than half of the patients (55%) had
more than five FDG-avid liver lesions, 22% had 2-5 FDG-
avid lesions, and 23% had a single FDG-avid lesion. The
liver reference SUV ___ was 2.17+0.48 g/mL, and the mean
tumor SUV,__ was 10.52+7.50 g/mL.

Patients were randomly assigned to a training set (n=85)
and a test set (n=15). In the test set, nine patients were
female and six were male. Primary malignancies in this group
included breast cancer (n=6), colorectal carcinoma (n=3),
lung cancer (n=2), and lymphoma (n=2). The remaining
patients had pancreatic cancer, tumors of unknown origin,
or esophageal cancer. The mean age of the test group was
59+15 years, and the mean reference liver SUV,_,, was
2.25+0.32 g/mL.

Segmentation of Liver on CT Images

In the test group, the median reference liver volume was
1679 mL (range: 887.6-2536.3 mL). The SwinUNETR model
achieved a median Dice score of 97.59% (range: 95.41%-
98.93%). The median liver volume estimated by SwinUNETR
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was 1672.2 mL (range: 872.9-2414.4 mL). Bland-Altman
analysis demonstrated a median bias of -0.94% (95% ClI:
-1.05 to -0.64), with lower and upper LoA of -3.76% and
+0.50%, respectively (Figure 1). These results indicate that
SWINUNETR slightly underestimated the liver volume but
maintained high segmentation accuracy.

The Residual UNET model achieved a median dice score of
97.85% (range, 94.81-98.80%). The median liver volume
estimated by Residual UNET was 1693.17 mL (range:
891.24-2361.7 mL). Bland-Altman analysis revealed
a median bias of -0.34% (95% Cl: -0.58 to -0.17); LoA:
-2.63% to +1.16%. When comparing the dice scores of
the two models, SwinUNETR had higher scores in 13
patients (87%) and lower scores in 2 patients (13%)
(p=0.036; Figure 2). The DSC values for each patient and
the differences between SwinUNETR and Residual UNET
models in liver segmentation are given in Table 1.

Segmentation of Tumors on Masked PET Images

In the test group, the median number of liver tumors was
6 (range: 1-39), and the median reference MTV was 58.71
mL (range: 2.20-374.20 mL). The median SUV__, SUV___,
and TLG values in the reference segmentations were
9.98 g/mL (range: 5.46-18.65 g/mL), 4.76 g/mL (range:
3.20-9.21 g/mL), and 337.92 g (range: 8.76-3447.90 g),

respectively.

MTV

The SwinUNETR model achieved a median dice score of
92.62% (range: 80.75%-97.46%). The median MTV and
TLG estimated by SwinUNETR were 50.84 mL (range:
1.62-343.36 mL) and 287.11 g (range: 6.86-3334.18 q),
respectively. In the Bland-Altman analysis, the SwinUNETR
model demonstrated a median bias of -8.60% (95% Cl:
-16.8 to -2.15) for MTV, with lower and upper LoA of
-31.62% and +1.21%, respectively. Similarly, SwWinUNETR
model had a median bias of -6.40% (95% Cl: -10.08 to
-2.13) for TLG, with lower and upper LoA of -25.58% and
+0.76%, respectively.

The Residual UNET model achieved a median dice score of
93.07% (range: 80.74-98.18%). The medians of MTV and
TLG estimated by Residual U-Net were 56.22 mL (range:
1.70-400.15 mL) and 269.20 g (range: 6.40-3015.43 g),
respectively. In the Bland-Altman analysis, the Residual
UNET model demonstrated a median bias of -4.33% (95%
Cl: -10.62% to -1.59%) for MTV, with lower and upper
LoA of -24.36% and +10.12%, respectively. Similarly, the
Residual UNET model showed a median bias of -11.10%
(95% Cl: -16.87 to -6.22) for TLG, with lower and upper
LoA of -30.8% and +4.52%, respectively. When dice scores
were compared, SWinUNETR outperformed Residual UNET
in 8 patients (53%) and scored lower in 7 patients (47%)
(p=0.570). Examples of patient segmentation results are
shown in Figures 3 and 4. The DSC values for each patient
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and the differences between SwinUNETR and Residual
UNET models in tumor segmentation are given in Table 2.

Discussion

In this study, both the SwinUNETR and residual UNET models
achieved excellent performance in liver segmentation
on CT images, with median dice scores exceeding 97%
and narrow LoA. Although the SwinUNETR model

Residual UNET

SwinUNETR

Reference

Figure 2. Reference and predicted segmentation results of a 36-year-
old female patient with lymphoma. Significant ascites can be observed;
SwinUNETR and Residual UNET models achieved dice scores of 97.65%
and 97.36%, respectively, for liver segmentation. In the Residual UNET
model, several extrahepatic regions are falsely identified as liver because
of ascites (yellow arrows)

Table 1. The DSC values and differences in segmentation

slightly outperformed the residual UNET in terms of dice
score, the difference was modest, and both approaches
demonstrated highly reliable volumetric agreement with

SwinUNETR Residual UNET

Reference

Figure 3. Reference and predicted segmentation results of an 81-year-
old female patient with diffuse large B cell lymphoma. A large, strongly
fluorodeoxyglucose-avid mass with areas of necrosis can be observed in
the right lobe of the liver. SwinUNETR achieved dice scores of 98.71% for
liver segmentation and 95.66% for tumor segmentation, while residual
UNET achieved 98.50% for liver segmentation and 96.36% for tumor
segmentation

of liver calculated fo_r both Sw_inUNETR and residual UNET Table 2. The DSC values and differences in segmentation
models for each patient are given of tumors calculated for both SwinUNETR and
Patients SwinUNETR Residual UNET Difference residual UNET models for each patient are given
Dsc DSC - SwinUNETR | Residual UNET | ..
Patient 1 98.93% 98.20% +0.73% DsC DsC
Patient 2 98.84% 98.60% +0.24% Patient 1 97.46% 97.33% +0.13%
Patient3 | 98.81% 98.80% +0.02% e SR St ol
Patient4 | 98.81% 98.64% +0.16% Pl 3 e ek SEA
1 o, () o,
Patient 5 98.71% 98.50% +0.21% Patient 4 colier SEER Al
Patient 5 95.949 94.709 +1.239
Patient 6 98.63% 98.51% +0.12% aten i & e
, Patient 6 95.66% 96.36% -0.70%
Patient 7 97.65% 97.36% +0.29% F— B e T
atien . (o] 5 (o] -U. (o]
Patient 8 97.59% 97.85% -0.26% 5
Patient 8 92.62% 90.29% +2.32%
Patient 9 97.579 98.129 -0.549 :
ahen % % % Patient 9 91.01% 85.93% +5.08%
1 0, 0, 0,
PG | B2 LY e Patient 10 90.25% 93.07% 2.81%
FECE ]| B e ROl Patient 11 90.06% 93.07% 3.01%
Patient12 | 96.62% 96.56% +0.06% Patient 12 87.84% 94.29% 6.44%
Patient 13 | 95.89% 95.88% +0.01% Patient 13 86.76% 89.17% 2.41%
Patient 14 | 95.73% 95.25% +0.48% Patient 14 82.37% 87.53% -5.16%
Patient 15 | 95.41% 94.81% +0.59% Patient 15 80.75% 80.74% +0.02%
DSC: Dice similarity coefficient DSC: Dice similarity coefficient
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reference segmentations. While both models may produce
errors in patients with liver disease such as hepatosteatosis
(Figure 5) or ascites (Figure 2) these results indicate that
transformer-based and residual convolutional architectures
are viable options for accurate hepatic segmentation in
clinical and research settings.

For tumor segmentation on masked PET images, both
models also demonstrated high performance, although
their accuracy was lower than for liver segmentation.

SwinUNETR

74

Reference Residual UNET

i

Figure 4. Reference and predicted segmentation results of an 81-year-old
male patient with rectal carcinoma. Multiple strongly fluorodeoxyglucose-
avid lesions can be observed in both lobes of the liver. While both
models successfully predicted most lesions, SWINUNETR missed a small
metastasis, and the residual UNET model predicted the same lesion to
be larger than the reference (yellow arrows). SWinUNETR achieved dice
scores of 97.26% (liver) and 97.07% (tumor); residual UNET achieved
97.20% (liver) and 98.18% (tumor)

FDG PET/CT Reference SwinUNETR Residual UNET

Figure 5. Reference and predicted segmentation results of a 56-year-old
female patient with breast cancer metastasis of the liver. The patient had
significant hepatosteatosis with hepatomegaly, and the lateral segment
of the left lobe of the liver extended into the upper left quadrant. As
a result, both the SwinUNETR and Residual UNET models failed to
recognize the most lateral portions of the liver (red arrows); additionally,
the UNET model produced a false-positive region erroneously labeled as
liver (yellow arrow). In addition, the residual UNET model produced small
false-positive foci in tumor segmentation due to noise in PET images
(indicated by the blue arrows). SWinUNETR and Residual UNET models
achieved Dice scores of 95.41% and 94.81% for liver segmentation and
91.01% and 85.93% for tumor segmentation, respectively
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This is not unexpected, as tumor segmentation in FDG
PET is inherently more challenging. Factors such as image
noise, heterogeneous tracer uptake, and the presence
of physiological uptake in adjacent structures can
introduce false-positive voxels. Furthermore, variations
in SUV thresholding methods can lead to differences in
measured MTV and TLG, even for the same lesion. Despite
these challenges, the majority of the predicted MTV and
TLG values in our study were within +10% of reference
measurements, a level of agreement that is likely sufficient
for many clinical applications, including treatment planning
and response assessment. From a practical standpoint,
these models could be integrated into clinical workflows
to automate time-consuming segmentation tasks, assist in
treatment planning for radiotherapy or radioembolization,
and provide reproducible volumetric measurements for
research studies. Given their open-source availability, they
can also serve as a foundation for further development,
including fine-tuning for specific scanner protocols or
disease subtypes.

Our results compare favorably with the literature. Previous
studies have reported Dice scores for liver segmentation
in the range of 94-97% using deep learning methods
(29,30,31), placing both of our models at the higher end
of this reported range. In tumor segmentation using deep
learning methods, Leung et al. (32) developed models
using '®F-FDG PET/CT and Galium-68 prostate-specific
membrane antigen PET/CT and showed that median
DSCs of up to 0.83 can be achieved for patients with
lung cancer, melanoma, lymphoma, and prostate cancer.
Although the dice scores achieved by both models (median
>92%) indicate a high degree of accuracy, particularly given
the heterogeneity of the test cohort, we masked the liver
segment to simplify a two-pass algorithm; therefore, direct
comparison was not feasible. Our approach differs by being
specifically optimized for hepatic tumor segmentation
on PET, potentially enhancing performance in cases of
complex intrahepatic disease. In this context, Luo et al.
(33) investigated the role of deep learning models in the
detection and diagnosis of focal lesions in "®F-FDG PET/CT
images and achieved a Dice coefficient of 0.740. In addition,
the developed models demonstrated high performance in
differentiating benign from malignant liver nodules.

Study Limitations

Our study has several limitations. First, it was conducted at
a single center; external validation on datasets from other
institutions would be necessary to confirm generalizability.
Second, although our models demonstrated high accuracy,
tumor segmentation performance was still influenced
by PET noise and by the thresholding approach used to
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generate ground truth. Third, we were unable to compare
our results directly with TotalSegmentator because our
ground-truth labels include the intrahepatic segments
of the inferior vena cava and the portal vein, which
TotalSegmentator delineates as separate structures. Finally,
although our test set contained a range of primary and
metastatic lesions, sample sizes for certain tumor subtypes
were relatively small, which may limit the generalizability of
our findings across all disease presentations.

Conclusion

Both the SwinUNETR and residual UNET models achieved
excellent accuracy for liver segmentation and high
performance for hepatic tumor segmentation on "8F-FDG PET/
CT, with most volumetric measurements falling within clinically
acceptable limits. While SwinUNETR demonstrated slightly
superior performance, both architectures showed potential
for integration into clinical workflows and research pipelines.
Given their open-source availability and adaptability, these
models could support automated, reproducible segmentation
in treatment planning and quantitative imaging.
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