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Öz
Amaç: Bu çalışmanın amacı SwinUNETR ve Residual UNET mimarilerini kullanarak 18F-florodeoksiglukoz pozitron emisyon tomografisi/bilgisayarlı 
tomografinin (18F-FDG PET/BT) görüntülerinde karaciğer ve hepatik tümörlerin otomatik segmentasyon modellerini geliştirmek ve değerlendirmek; 
ayrıca bu modellerin karmaşık klinik olgulardaki doğruluğunu incelemek olarak belirlenmiştir.
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Abstract
Objectives: To develop and evaluate automated segmentation models for the liver and hepatic tumors on 18F-fluorodeoxyglucose positron 
emission tomography/computed tomography (18F-FDG PET/CT) using SwinUNETR and residual UNET architectures, and to assess their accuracy 
in complex clinical cases.
Methods: In this single-center retrospective study, 100 patients (48 males, 52 females; mean age 61±14 years) with 18F-FDG-avid hepatic lesions 
from various primary malignancies were included. Liver segmentation was performed on non-contrast CT images using pairs of SwinUNETR 
and residual UNET models, and tumor segmentation was performed on masked PET images using separately trained pair of SwinUNETR and 
residual UNET model. Model performance was evaluated using the dice similarity coefficient (DSC), volumetric bias, and Bland-Altman analysis for 
metabolic tumor volume (MTV) and total lesion glycolysis (TLG).
Results: For liver segmentation, SwinUNETR achieved a median DSC of 97.59% (range: 95.41-98.93%) with a median volumetric bias of -0.94% 
(LoA: -3.76% to +0.50%), while residual UNET achieved a median DSC of 97.85% (range: 94.81-98.80%) with a median volumetric bias of 
-0.34% (LoA: -2.63% to +1.16%). For tumor segmentation, SwinUNETR achieved a median DSC of 92.62% (range: 80.75–97.46%), an MTV bias 
of -8.60% (LoA: -31.62% to +1.21%), and a TLG bias of -6.40% (LoA: -25.58% to +0.76%). Residual UNET achieved a median DSC of 93.07% 
(range: 80.74–98.18%), MTV bias of -4.33% (LoA: -24.36% to +10.12%), and TLG bias of -11.10% (LoA: -30.8% to +4.52%). Most MTV and TLG 
measurements were within ±10% of reference values.
Conclusion: Both SwinUNETR and Residual UNET achieved excellent liver segmentation accuracy and clinically acceptable tumor segmentation 
performance on 18F-FDG PET/CT, with SwinUNETR showing slightly better performance in liver volumetric measurements. These open-source 
models could be integrated into clinical workflows to automate segmentation tasks, facilitate treatment planning for liver-directed therapies, and 
support reproducible quantitative imaging analyses.
Keywords: Deep learning, SwinUNETR, positron-emission tomography, molecular imaging, fluorodeoxyglucose, image processing
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Introduction

Primary liver malignancies, particularly hepatocellular 
carcinoma (HCC), represent a major global health burden, 
ranking as one of the leading causes of cancer-related 
mortality worldwide (1). In addition to primary tumors, 
the liver is a frequent site of metastatic spread from 
various malignancies, including colorectal, breast, and 
pancreatic cancers (2,3,4). Early detection and accurate 
characterization of hepatic lesions are essential, as the 
prognosis of patients with liver involvement depends 
heavily on timely diagnosis and appropriate therapeutic 
intervention. Proper treatment planning—whether through 
surgical resection, transplantation, systemic therapy, 
or locoregional approaches—can significantly improve 
survival outcomes in both primary and secondary hepatic 
malignancies.

Accurate delineation of the liver and its tumors plays a 
pivotal role in several advanced treatment strategies. For 
therapies such as selective internal radiation therapy (SIRT) 
(SIRT, also known as radioembolization) and stereotactic 
body radiotherapy, precise volumetric and spatial 
characterization of tumor burden is required to optimize 
dosimetry, minimize healthy tissue damage, and maximize 
therapeutic efficacy (5-7). Furthermore, quantitative 
imaging biomarkers that have been shown to be reliable 
prognostic factors after radioembolization, such as 
metabolic tumor volume (MTV) and total lesion glycolysis 
(TLG) on 18F-fluorodeoxyglucose positron emission 
tomography/computed tomography (18F-FDG PET/CT), rely 
on precise segmentation to ensure reproducibility across 
clinical and research settings (8,9).

Over the past decade, deep learning–based methods 
have revolutionized medical image segmentation, with 

convolutional neural networks (CNNs) and, more recently, 
transformer-based architectures delivering state-of-the-
art performance (10-12). Tools such as TotalSegmentator 
have demonstrated the potential of generalized pre-
trained models to achieve high accuracy in multi-organ 
segmentation tasks (13). In liver imaging, these approaches 
have significantly reduced the need for labor-intensive 
manual contouring, thus accelerating clinical workflows 
and enabling large-scale quantitative studies.

The SwinUNETR architecture, a transformer-based model 
incorporating hierarchical shifted-window self-attention 
and UNet-style encoder–decoder design, has shown strong 
performance in complex 3D segmentation tasks (10,11). By 
leveraging global contextual information while preserving 
fine anatomical details, SwinUNETR has the potential 
to outperform conventional CNN-based architectures in 
challenging segmentation scenarios. In clinical reality, 
diseased livers often present with anatomical distortions 
caused by ascites, postoperative changes, large tumor 
burdens, or extensive metastatic infiltration. Such conditions 
may degrade the performance of general-purpose 
segmentation models, underscoring the need for disease-
specific model training tailored to these complex cases.

Previous studies on liver segmentation using neural networks 
have generally employed fully convolutional architectures 
such as Residual UNET and have been performed on 
contrast-enhanced CT images. For example, in a recent 
study, Yashaswini et al. (14) evaluated the performance of 
Residual UNET models for liver and tumor segmentation 
on CT imaging and reported a Dice score of 91.44% for 
liver segmentation. Additionally, several other studies have 
investigated liver and tumor segmentation using CNNs 
(15,16). However, the utility and potential superiority of 

Yöntem: Tek merkezli, retrospektif bu çalışmaya, çeşitli primer ve metastatik 18F-FDG tutulumu gösteren karaciğer tümörleri bulunan 100 hasta 
(48 erkek, 52 kadın; ortalama yaş 61±14 yıl) dahil edildi. Karaciğer segmentasyonu kontrastsız BT görüntülerinde, tümör segmentasyonu ise 
maskeleme yapılmış PET görüntülerinde gerçekleştirildi. SwinUNETR ve Residual UNET modelleri karaciğer ve tümör segmentasyonu için ayrı ayrı 
eğitildi. Model performansı dice benzerlik katsayısı (DSC), volumetrik bias ve metabolik tümör hacmi (MTV) ile total lezyon glikolizi (TLG) değerleri 
Bland-Altman analizi ile karşılaştırıldı.
Bulgular: Karaciğer segmentasyonunda SwinUNETR modeli ile %97,59 (aralık: %95,41-98,93) medyan DSC ve -%0,94 (LoA: -%3,76 ila +%0,50) 
medyan volumetrik bias elde edilmiştir. Residual UNET modelinde ise %97,85 (aralık: %94,81-98,80) medyan DSC ve -%0,34 (LoA: -%2,63 ila 
+%1,16) bias değerleri izlenmiştir. Tümör segmentasyonunda SwinUNETR modelinde %92,62 (aralık: %80,75-97,46) medyan DSC, -%8,60 MTV 
bias (LoA: -%31,62 ila +%1,21) ve -%6,40 TLG bias (LoA: -%25,58 ila +%0,76) değerleri gözlenmiştir. Residual UNET modeli ise %93,07 (aralık: 
%80,74-98,18) medyan DSC, -%4,33 MTV bias (LoA: -%24,36 ila +%10,12) ve -%11,10 TLG bias (LoA: -%30,8 ila +%4,52) değerlerine sahip 
olarak izlenmiştir. MTV ve TLG ölçümlerinin çoğu referans değerlerin ±%10 aralığında yer aldı.
Sonuç: SwinUNETR ve Residual UNET modelleri, 18F-FDG PET/BT görüntülerinde yüksek derecede karaciğer segmentasyon doğruluğu ve klinik 
olarak kabul edilebilir tümör segmentasyonu performansı sağlamıştır. SwinUNETR modeli ise karaciğer segmentasyonunda Residual UNET 
modeline göre daha iyi sonuç vermiştir. Bu açık kaynaklı modeller, klinik iş akışlarına entegre edilerek segmentasyon görevlerini otomatikleştirebilir, 
karaciğere yönelik tedavi planlamasını kolaylaştırabilir ve tekrarlanabilir nicel görüntüleme analizlerini destekleyebilir.
Anahtar kelimeler: Derin öğrenme, SwinUNETR, pozitron emisyon tomografisi, moleküler görüntüleme, florodeoksiglikoz, görüntü işleme
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SwinUNETR for liver and tumor segmentation, compared 
to Residual UNET models, have not yet been explored. 
Furthermore, although there are multiple studies on tumor 
segmentation in PET imaging, research combining PET and 
CT imaging for segmentation remains rare.

In this study, we aimed to develop and evaluate automated 
segmentation models, using both SwinUNETR-V2 and 
residual U-Net architectures, to segment the liver and 
hepatic tumors from18F-FDG PET/CT images. Our goal 
was to assess their accuracy in the context of challenging 
clinical cases and to explore the feasibility of disease-
specific segmentation models that can maintain robust 
performance in anatomically complex livers. The developed 
models are also intended for use in conjunction with the 
previously developed radioembolization dosimetry module 
for 3D Slicer (17).

Materials and Methods

Patients and Study Design

This single-center, retrospective study included patients 
with 18F-FDG-avid hepatic lesions from various malignancies 
who underwent 18F-FDG PET/CT imaging from January 
2025 to July 2025. Written informed consent was obtained 
from all patients before imaging. Exclusion criteria were: 
(1) significant respiratory artefacts; (2) artefacts secondary 
to patient motion; and (3) artefacts secondary to metallic 
objects or prostheses on CT imaging. The study was 
approved by the Ethics Committee of Harran University 
(approval no: HRÜ-25.11.02, date: 16.06.2025), with 
additional approval from the institutional review board. 
The developed segmentation models and training scripts 
(18,19), images of four patients for testing (20), and the 
SlicerAether segmentation module for 3D Slicer (18) are 
available in public repositories.

18F-FDG PET/CT Protocol and Preprocessing of the 
Data

Imaging was performed using a Siemens Biograph 
Horizon™ 4R system. Patients fasted for at least 6 hours 
before imaging, and blood glucose levels were checked 
prior to the scan. Those with a blood glucose level above 
200 mg/dL did not undergo scanning. Images were 
acquired from the vertex to the proximal femur with the 
patient in the supine position. Whole-body 18F-FDG PET/
CT imaging was performed approximately 1 h after an 
intravenous injection of 18F-FDG at 3.7 MBq/kg. For PET/
CT imaging, PET images were acquired for 90 seconds per 
bed position and were reconstructed using attenuation 
correction measured from non-contrast CT images. For 
reconstruction of PET images, the TrueX+TOF (UltraHD-

PET) algorithm was used with 4 iterations and 10 subsets, 
a 5-mm post-processing Gaussian filter, and a 180 × 180 
matrix. The resulting voxel size was 4.11392 × 4.11392 × 
1.50 mm. All PET images were converted to standardized 
uptake values (SUVs), normalized to body weight, and 
resampled to an isotropic voxel size of 2 × 2 × 2 mm prior 
to training. No further normalization other than conversion 
to SUV values was used. 

Non-contrast-enhanced CT images were acquired at 130 kV 
with a variable tube current modulated according to patient 
weight using the CareDose4D (Siemens Healthineers) and 
reconstructed with a 512 × 512 matrix. The resulting 
voxel size was 1.367 × 1.367 × 1.50 mm. Similarly, the CT 
images were resampled to an isotropic voxel size of 2×2×2 
mm before training. For CT images, voxel intensities were 
normalized using a linear scaling transformation in which 
values between -135 hounsfield unit (HU) and +215 HU 
were mapped to the range 0.0-10.0; values outside this 
range were clipped to the nearest boundary.

For preprocessing, PET and CT volumes were cropped to a 
bounding box encompassing the upper abdomen to remove 
empty voxels and reduce computational load. The liver was 
manually segmented on CT images for all patients, and the 
resulting liver masks were used to zero out voxels outside 
the liver in the PET volumes. A spherical reference volume 
of interest was placed in the non-tumoral liver parenchyma, 
and a threshold equal to 1.5 times the liver reference SUV

mean
 

was used for manual tumor segmentation. Afterwards, 
the CT images, masked PET images, and liver and tumor 
segmentation masks were saved for further processing.

Training volumes were split into overlapping 96 × 96 × 
96-voxel patches, yielding 680 training pairs. No patching 
was applied during testing; instead, a sliding-window 
inference with the same patch size was used. Preprocessing 
was performed using 3D Slicer (version 5.9) and custom 
Python scripts (21,22). 

Model Architecture Loss Function and Training 
Parameters

A volumetric segmentation model based on the SwinUNETR 
architecture, originally proposed by Hatamizadeh et al. (10) 
and later extended by He et al. (11) as SwinUNETR-V2, 
was implemented. SwinUNETR-V2 integrates the Swin 
Transformer with a UNET-style encoder–decoder and 
residual convolutional blocks at the start of each Swin 
stage, enabling high representational capacity for 3D 
medical images (10,23). In this study, one SwinUNETR-V2 
model was trained to segment the liver in CT images, and 
another model with identical parameters was trained to 
segment tumors in masked PET images. Both models used 
a feature size of 24, transformer depths of (2, 2, 2, 2), 
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attention heads of (3, 6, 12, 24), a dropout path rate of 
0.0, input volumes of 96 × 96 × 96 voxels, and gradient 
checkpointing to reduce memory usage. Each model had 
approximately 18.3 million trainable parameters and was 
trained with a batch size of 1.

We also utilized UNET-structured models with residual 
blocks for comparison with SwinUNETR models (12). The 
3D residual UNET model was configured with an input 
batch size of 4 and a total of 76.8M trainable parameters. 
This network employed five resolution levels with channel 
sizes of 64, 128, 256, 512, and 1024; two residual units 
per level; strides of (2, 2, 2, 2) for down- and up-sampling; 
and 3 × 3 × 3 convolution kernels.

The implementation was based on the PyTorch and MONAI 
frameworks and executed on a graphics processing unit 
(GPU)-enabled system, allowing efficient handling of 3D 
volumetric data (20,21,22). The GPU and central processing 
unit models used for training were an NVIDIA GeForce RTX 
4060 with 8 GB of VRAM and an Intel Core i3-9100F (3.60 
GHz). The Dice similarity coefficient (DSC) was calculated 
as follows (24,25,26):

Here, X denotes the set of voxels in the predicted 
segmentation; Y denotes the set of voxels in the ground-
truth segmentation; and ∣X ∩ Y∣ denotes the number of 
overlapping voxels. Dice loss was defined as follows:

Dice loss = 1 – Dice score.

In addition, cross-entropy loss values were calculated, and 
a hybrid loss function was used for training:

Training Loss Function = 0.5 × Dice Loss + 0.5 ×  
Cross Entropy Loss

Testing of the Models and Performance Evaluation 
Metrics

A total of four models were developed for the segmentation 
of the liver and liver lesions. For liver segmentation, the 
reference liver volume, the predicted liver volume, and 
their intersection were computed. Model performance 
was assessed using the DSC, where a value of 1 indicates 
perfect overlap between the predicted and reference 
segmentation, and a value of 0 indicates no overlap.

For tumor segmentation on PET images, the DSC was also 
used as the primary evaluation metric. In addition, MTV 
and TLG were calculated for both the reference and model-
predicted segmentations. TLG was defined as:

TLG = MTV × SUV
mean

Statistical Analysis

Descriptive statistics were reported as counts and percentages 
for categorical variables, and as mean ± standard deviation 
and median (range) for continuous variables. A p-value less 
than 0.05 was considered statistically significant for all 
analyses. Dice scores obtained from the SwinUNETR and 
residual UNET models were compared using the Wilcoxon 
signed-rank test.

For tumor segmentation, predicted and reference MTV 
and TLG values were compared using Bland-Altman plots. 
The bias, along with 95% confidence intervals (CIs) and 
limits of agreement (LoA), was calculated for both models. 
All statistical analyses were performed using RStudio 
(version 2025.05.1), IBM SPSS Statistics (version 27), and 
BA-plotteR (27,28).

Results

Patients and General Characteristics 

A total of 110 patients were initially considered for 
inclusion. Six patients were excluded due to respiratory 
artifacts, and four were excluded due to metallic artifacts 
in the upper abdominal CT images. Consequently, 100 
patients (48 males, 52 females) with various malignancies 
were included in the study. The mean age was 61±14 
years. The most common primary malignancies were 
breast cancer (28%), colorectal carcinoma (23%), lung 
cancer (13%), gastric cancer (8%), and pancreatic cancer 
(6%). The remaining patients had HCC, lymphoma, ovarian 
cancer, esophageal cancer, gallbladder cancer, cervical 
cancer, soft tissue sarcoma, tumors of unknown origin, or 
thyroid cancer. More than half of the patients (55%) had 
more than five FDG-avid liver lesions, 22% had 2-5 FDG-
avid lesions, and 23% had a single FDG-avid lesion. The 
liver reference SUV

mean
 was 2.17±0.48 g/mL, and the mean 

tumor SUV
max

 was 10.52±7.50 g/mL.

Patients were randomly assigned to a training set (n=85) 
and a test set (n=15). In the test set, nine patients were 
female and six were male. Primary malignancies in this group 
included breast cancer (n=6), colorectal carcinoma (n=3), 
lung cancer (n=2), and lymphoma (n=2). The remaining 
patients had pancreatic cancer, tumors of unknown origin, 
or esophageal cancer. The mean age of the test group was 
59±15 years, and the mean reference liver SUV

mean
 was 

2.25±0.32 g/mL.

Segmentation of Liver on CT Images

In the test group, the median reference liver volume was 
1679 mL (range: 887.6-2536.3 mL). The SwinUNETR model 
achieved a median Dice score of 97.59% (range: 95.41%-
98.93%). The median liver volume estimated by SwinUNETR 
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was 1672.2 mL (range: 872.9-2414.4 mL). Bland-Altman 
analysis demonstrated a median bias of --0.94% (95% CI: 
-1.05 to -0.64), with lower and upper LoA of -3.76% and 
+0.50%, respectively (Figure 1). These results indicate that 
SwinUNETR slightly underestimated the liver volume but 
maintained high segmentation accuracy.

The Residual UNET model achieved a median dice score of 
97.85% (range, 94.81-98.80%). The median liver volume 
estimated by Residual UNET was 1693.17 mL (range: 
891.24-2361.7 mL). Bland-Altman analysis revealed 
a median bias of -0.34% (95% CI: -0.58 to -0.17); LoA: 
-2.63% to +1.16%. When comparing the dice scores of 
the two models, SwinUNETR had higher scores in 13 
patients (87%) and lower scores in 2 patients (13%) 
(p=0.036; Figure 2). The DSC values for each patient and 
the differences between SwinUNETR and Residual UNET 
models in liver segmentation are given in Table 1.

Segmentation of Tumors on Masked PET Images

In the test group, the median number of liver tumors was 
6 (range: 1-39), and the median reference MTV was 58.71 
mL (range: 2.20-374.20 mL). The median SUV

max
, SUV

mean
, 

and TLG values in the reference segmentations were 
9.98 g/mL (range: 5.46-18.65 g/mL), 4.76 g/mL (range: 
3.20-9.21 g/mL), and 337.92 g (range: 8.76-3447.90 g), 
respectively.

The SwinUNETR model achieved a median dice score of 
92.62% (range: 80.75%-97.46%). The median MTV and 
TLG estimated by SwinUNETR were 50.84 mL (range: 
1.62-343.36 mL) and 287.11 g (range: 6.86-3334.18 g), 
respectively. In the Bland-Altman analysis, the SwinUNETR 
model demonstrated a median bias of -8.60% (95% CI: 
-16.8 to -2.15) for MTV, with lower and upper LoA of 
-31.62% and +1.21%, respectively. Similarly, SwinUNETR 
model had a median bias of -6.40% (95% CI: -10.08 to 
-2.13) for TLG, with lower and upper LoA of -25.58% and 
+0.76%, respectively.

The Residual UNET model achieved a median dice score of 
93.07% (range: 80.74-98.18%). The medians of MTV and 
TLG estimated by Residual U-Net were 56.22 mL (range: 
1.70-400.15 mL) and 269.20 g (range: 6.40-3015.43 g), 
respectively. In the Bland-Altman analysis, the Residual 
UNET model demonstrated a median bias of -4.33% (95% 
CI: -10.62% to -1.59%) for MTV, with lower and upper 
LoA of -24.36% and +10.12%, respectively. Similarly, the 
Residual UNET model showed a median bias of -11.10% 
(95% CI: -16.87 to -6.22) for TLG, with lower and upper 
LoA of -30.8% and +4.52%, respectively. When dice scores 
were compared, SwinUNETR outperformed Residual UNET 
in 8 patients (53%) and scored lower in 7 patients (47%) 
(p=0.570). Examples of patient segmentation results are 
shown in Figures 3 and 4. The DSC values for each patient 

Figure 1. Bland-Altman plots of the segmentations predicted with SwinUNETR (A, B, C) and residual UNET (D, E, F) compared to the reference 
segmentation 
MTV: Metabolic tumor volume, TLG: Total lesion glycolysis
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and the differences between SwinUNETR and Residual 
UNET models in tumor segmentation are given in Table 2.

Discussion

In this study, both the SwinUNETR and residual UNET models 
achieved excellent performance in liver segmentation 
on CT images, with median dice scores exceeding 97% 
and narrow LoA. Although the SwinUNETR model 

slightly outperformed the residual UNET in terms of dice 
score, the difference was modest, and both approaches 
demonstrated highly reliable volumetric agreement with 

Table 1. The DSC values and differences in segmentation 
of liver calculated for both SwinUNETR and residual UNET 
models for each patient are given

Patients SwinUNETR 
DSC

Residual UNET 
DSC Difference

Patient 1 98.93% 98.20% +0.73%

Patient 2 98.84% 98.60% +0.24%

Patient 3 98.81% 98.80% +0.02%

Patient 4 98.81% 98.64% +0.16%

Patient 5 98.71% 98.50% +0.21%

Patient 6 98.63% 98.51% +0.12%

Patient 7 97.65% 97.36% +0.29%

Patient 8 97.59% 97.85% -0.26%

Patient 9 97.57% 98.12% -0.54%

Patient 10 97.26% 97.20% +0.06%

Patient 11 97.25% 97.13% +0.12%

Patient 12 96.62% 96.56% +0.06%

Patient 13 95.89% 95.88% +0.01%

Patient 14 95.73% 95.25% +0.48%

Patient 15 95.41% 94.81% +0.59%

DSC: Dice similarity coefficient

Table 2. The DSC values and differences in segmentation 
of tumors calculated for both SwinUNETR and 
residual UNET models for each patient are given

Patients SwinUNETR 
DSC

Residual UNET 
DSC Difference

Patient 1 97.46% 97.33% +0.13%

Patient 2 97.07% 98.18% -1.11%

Patient 3 96.35% 89.91% +6.44%

Patient 4 96.02% 93.99% +2.03%

Patient 5 95.94% 94.70% +1.23%

Patient 6 95.66% 96.36% -0.70%

Patient 7 93.74% 94.58% -0.84%

Patient 8 92.62% 90.29% +2.32%

Patient 9 91.01% 85.93% +5.08%

Patient 10 90.25% 93.07% -2.81%

Patient 11 90.06% 93.07% -3.01%

Patient 12 87.84% 94.29% -6.44%

Patient 13 86.76% 89.17% -2.41%

Patient 14 82.37% 87.53% -5.16%

Patient 15 80.75% 80.74% +0.02%

DSC: Dice similarity coefficient

Figure 2. Reference and predicted segmentation results of a 36-year-
old female patient with lymphoma. Significant ascites can be observed; 
SwinUNETR and Residual UNET models achieved dice scores of 97.65% 
and 97.36%, respectively, for liver segmentation. In the Residual UNET 
model, several extrahepatic regions are falsely identified as liver because 
of ascites (yellow arrows)

Figure 3. Reference and predicted segmentation results of an 81-year-
old female patient with diffuse large B cell lymphoma. A large, strongly 
fluorodeoxyglucose-avid mass with areas of necrosis can be observed in 
the right lobe of the liver. SwinUNETR achieved dice scores of 98.71% for 
liver segmentation and 95.66% for tumor segmentation, while residual 
UNET achieved 98.50% for liver segmentation and 96.36% for tumor 
segmentation
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reference segmentations. While both models may produce 
errors in patients with liver disease such as hepatosteatosis 
(Figure 5) or ascites (Figure 2) these results indicate that 
transformer-based and residual convolutional architectures 
are viable options for accurate hepatic segmentation in 
clinical and research settings. 

For tumor segmentation on masked PET images, both 
models also demonstrated high performance, although 
their accuracy was lower than for liver segmentation. 

This is not unexpected, as tumor segmentation in FDG 
PET is inherently more challenging. Factors such as image 
noise, heterogeneous tracer uptake, and the presence 
of physiological uptake in adjacent structures can 
introduce false-positive voxels. Furthermore, variations 
in SUV thresholding methods can lead to differences in 
measured MTV and TLG, even for the same lesion. Despite 
these challenges, the majority of the predicted MTV and 
TLG values in our study were within ±10% of reference 
measurements, a level of agreement that is likely sufficient 
for many clinical applications, including treatment planning 
and response assessment. From a practical standpoint, 
these models could be integrated into clinical workflows 
to automate time-consuming segmentation tasks, assist in 
treatment planning for radiotherapy or radioembolization, 
and provide reproducible volumetric measurements for 
research studies. Given their open-source availability, they 
can also serve as a foundation for further development, 
including fine-tuning for specific scanner protocols or 
disease subtypes.

Our results compare favorably with the literature. Previous 
studies have reported Dice scores for liver segmentation 
in the range of 94-97% using deep learning methods 
(29,30,31), placing both of our models at the higher end 
of this reported range. In tumor segmentation using deep 
learning methods, Leung et al. (32) developed models 
using 18F-FDG PET/CT and Galium-68 prostate-specific 
membrane antigen PET/CT and showed that median 
DSCs of up to 0.83 can be achieved for patients with 
lung cancer, melanoma, lymphoma, and prostate cancer. 
Although the dice scores achieved by both models (median 
>92%) indicate a high degree of accuracy, particularly given 
the heterogeneity of the test cohort, we masked the liver 
segment to simplify a two-pass algorithm; therefore, direct 
comparison was not feasible. Our approach differs by being 
specifically optimized for hepatic tumor segmentation 
on PET, potentially enhancing performance in cases of 
complex intrahepatic disease. In this context, Luo et al. 
(33) investigated the role of deep learning models in the 
detection and diagnosis of focal lesions in 18F-FDG PET/CT 
images and achieved a Dice coefficient of 0.740. In addition, 
the developed models demonstrated high performance in 
differentiating benign from malignant liver nodules.

Study Limitations

Our study has several limitations. First, it was conducted at 
a single center; external validation on datasets from other 
institutions would be necessary to confirm generalizability. 
Second, although our models demonstrated high accuracy, 
tumor segmentation performance was still influenced 
by PET noise and by the thresholding approach used to 

Figure 4. Reference and predicted segmentation results of an 81-year-old 
male patient with rectal carcinoma. Multiple strongly fluorodeoxyglucose-
avid lesions can be observed in both lobes of the liver. While both 
models successfully predicted most lesions, SwinUNETR missed a small 
metastasis, and the residual UNET model predicted the same lesion to 
be larger than the reference (yellow arrows). SwinUNETR achieved dice 
scores of 97.26% (liver) and 97.07% (tumor); residual UNET achieved 
97.20% (liver) and 98.18% (tumor)

Figure 5. Reference and predicted segmentation results of a 56-year-old 
female patient with breast cancer metastasis of the liver. The patient had 
significant hepatosteatosis with hepatomegaly, and the lateral segment 
of the left lobe of the liver extended into the upper left quadrant. As 
a result, both the SwinUNETR and Residual UNET models failed to 
recognize the most lateral portions of the liver (red arrows); additionally, 
the UNET model produced a false-positive region erroneously labeled as 
liver (yellow arrow). In addition, the residual UNET model produced small 
false-positive foci in tumor segmentation due to noise in PET images 
(indicated by the blue arrows). SwinUNETR and Residual UNET models 
achieved Dice scores of 95.41% and 94.81% for liver segmentation and 
91.01% and 85.93% for tumor segmentation, respectively
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generate ground truth. Third, we were unable to compare 
our results directly with TotalSegmentator because our 
ground-truth labels include the intrahepatic segments 
of the inferior vena cava and the portal vein, which 
TotalSegmentator delineates as separate structures. Finally, 
although our test set contained a range of primary and 
metastatic lesions, sample sizes for certain tumor subtypes 
were relatively small, which may limit the generalizability of 
our findings across all disease presentations.

Conclusion

Both the SwinUNETR and residual UNET models achieved 
excellent accuracy for liver segmentation and high 
performance for hepatic tumor segmentation on 18F-FDG PET/
CT, with most volumetric measurements falling within clinically 
acceptable limits. While SwinUNETR demonstrated slightly 
superior performance, both architectures showed potential 
for integration into clinical workflows and research pipelines. 
Given their open-source availability and adaptability, these 
models could support automated, reproducible segmentation 
in treatment planning and quantitative imaging. 
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