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Abstract
Objectives: Attenuation correction is a critical phenomenon in quantitative positron emission tomography (PET) imaging with its own special 
challenges. However, computed tomography (CT) modality which is used for attenuation correction and anatomical localization increases patient 
radiation dose. This study was aimed to develop a deep learning model for attenuation correction of whole-body 68Ga-DOTATATE PET images.
Methods: Non-attenuation-corrected and computed tomography-based attenuation-corrected (CTAC) whole-body 68Ga-DOTATATE PET images 
of 118 patients from two different imaging centers were used. We implemented a residual deep learning model using the NiftyNet framework. 
The model was trained four times and evaluated six times using the test data from the centers. The quality of the synthesized PET images was 
compared with the PET-CTAC images using different evaluation metrics, including the peak signal-to-noise ratio (PSNR), structural similarity index 
(SSIM), mean square error (MSE), and root mean square error (RMSE). 
Results: Quantitative analysis of four network training sessions and six evaluations revealed the highest and lowest PSNR values as (52.86±6.6) 
and (47.96±5.09), respectively. Similarly, the highest and lowest SSIM values were obtained (0.99±0.003) and (0.97±0.01), respectively. 
Additionally, the highest and lowest RMSE and MSE values fell within the ranges of (0.0117±0.003), (0.0015±0.000103), and (0.01072±0.002), 
(0.000121±5.07xe–5), respectively. The study found that using datasets from the same center resulted in the highest PSNR, while using datasets 
from different centers led to lower PSNR and SSIM values. In addition, scenarios involving datasets from both centers achieved the best SSIM and 
the lowest MSE and RMSE. 
Conclusion: Acceptable accuracy of attenuation correction on 68Ga-DOTATATE PET images using a deep learning model could potentially 
eliminate the need for additional X-ray imaging modalities, thereby imposing a high radiation dose on the patient.
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Introduction
68Ga-DOTATATE positron emission tomography/computed 
tomography (PET/CT) has emerged as a sensitive and 
accurate functional imaging method with significant 
advantages over conventional imaging in the diagnosis 
and management of neuroendocrine tumors (1,2). In 
PET imaging, a positron emitter radiopharmaceutical 
is administered to a patient that emits two 511-keV 
gamma photons in opposite directions following positron 
annihilation. However, the gamma pair can undergo 
photoelectric and Compton interactions before reaching 
the detector, leading to photon attenuation, poor contrast, 
and errors in quantitative calculations (3,4). 

If the PET images obtained from the standard uptake 
value (SUV) for diagnosis, prognosis, and treatment-
related issues are adequately corrected, it can enable 
quantitative measures with considerable accuracy (5). The 
use of CT-based attenuation correction (CTAC) algorithms 
is considered one of the most common and well-known 
methods of attenuation correction (AC) in PET (4). The main 
drawback of these methods is the imposed high effective 
dose on patients. There was a report in the early days of 
introducing PET/CT that showed that the average effective 
dose of patients from whole-body 18F-fluorodeoxyglucose 
(18F-FDG)-PET/CT examinations was approximately 25 
mSv (6). On the other hand, PET radiopharmaceuticals 
usually have an effective dose of 10 mSv (7). Therefore, 
the majority of the radiation dose received from imaging 
is related to CT scans. Because obtaining the tissue 
attenuation map directly from magnetic resonance imaging 
(MRI) signals poses challenges, various methods have been 
employed to address this issue (8,9,10,11,12). One of the 

commonly used methods for AC in PET/MRI scanners is the 
Dixon-based method (9). Nevertheless, a major drawback 
of this method is its failure to account for bone tissue (10). 
Consequently, a model-based approach was adopted to 
address this limitation (11). However, this method introduces 
a quantification error due to inconsistent registration (12). 
The inconsistency and small field of view of MRI compared 
with PET can result in the loss of information from certain 
body parts (13). Meanwhile, the maximum likelihood 
reconstruction of activity and attenuation (MLAA) algorithm 
can be used to obtain missing information and create an 
attenuation map from the PET emission data (14). However, 
one drawback of this algorithm is the presence of high 
noise and induced cross-talk artifacts (15). Additionally, 
atlas-based segmentation methods (16,17,18) have been 
employed, but they suffer from incorrect classification of 
tissue, anatomic abnormalities, noise, and metal-induced 
artifacts, making AC a challenging issue in PET/MRI (19). 
In recent years, deep learning has demonstrated great 
potential in enhancing medical image quality, denoizing, 
and artifact reduction (20,21). So far, deep learning has 
been used in producing synthetic CT using MRI images for 
AC in PET (22), including direct transformation to pseudo-
CT from T1-weighted MR, ultrashort echo time, zero-TE 
MR, Dixon, estimation of AC factors from time-of-flight 
data (23,24,25,26,27), generation of synthetic CT images 
from non-AC (NAC) PET images on whole-body PET/MRI 
imaging, and MLAA-based AC maps (28,29,30). However, 
there is a need for structural images, and accuracy is 
compromised by image artifacts from misregistration and 
inter-modality errors (31). Several studies have attempted 
to directly convert NAC PET images to corrected PET images 

Öz
Amaç: Atenüasyon düzeltmesi, kantitatif pozitron emisyon tomografisi (PET) görüntülemede kendine özgü zorlukları olan kritik bir olgudur. Ancak 
atenüasyon düzeltmesi ve anatomik lokalizasyonun sağlanması amacıyla kullanılan bilgisayarlı tomografi (BT) yöntemi hastanın aldığı radyasyon 
dozunu artırmaktadır. Bu çalışmada, tüm vücut 68Ga-DOTATATE PET görüntülerinin atenüasyon düzeltmesi için bir derin öğrenme modelinin 
geliştirilmesi amaçlandı.
Yöntem: İki farklı görüntüleme merkezinden 118 hastanın atenüasyon düzeltmesiz ve bilgisayarlı tomografi tabanlı atenüasyon düzeltmeli (CTAC) 
tüm vücut 68Ga-DOTATATE pozitron emisyon tomografi (PET) görüntüleri kullanıldı. NiftyNet çerçevesini kullanarak bir artık derin öğrenme modeli 
uyguladık. Model, merkezlerden alınan test verileri kullanılarak dört kez eğitildi ve altı kez değerlendirildi. Sentezlenen PET görüntülerinin kalitesi, 
tepe sinyal-gürültü oranı (PSNR), yapısal benzerlik indeksi (SSIM), ortalama kare hatası (MSE) ve kök ortalama kare hatası (RMSE) dahil olmak üzere 
farklı değerlendirme ölçümleri kullanılarak PET-CTAC görüntüleriyle karşılaştırıldı. 
Bulgular: Dört ağ eğitimi oturumunun ve altı değerlendirmenin kantitatif analizi ile en yüksek ve en düşük PSNR değerlerini sırasıyla (52,86±6,6) 
ve (47,96±5,09) olarak elde edildi. Benzer şekilde en yüksek ve en düşük SSIM değerleri sırasıyla (0,99±0,003) ve (0,97±0,01) olarak elde edildi. 
Ek olarak, en yüksek ve en düşük RMSE ve MSE değerleri sırasıyla (0,0117±0,003), (0,0015±0,000103) ve (0,01072±0,002), (0,000121±5,07xe–5) 
aralığında kaldı. Çalışma, aynı merkezden gelen veri kümelerinin kullanılmasının en yüksek PSNR değeri ile sonuçlandığını, farklı merkezlerden gelen 
veri kümelerinin kullanılmasının ise daha düşük PSNR ve SSIM değerleri ile sonuçlandığını buldu. Ayrıca her iki merkezden veri kümelerini içeren 
senaryolar ile en iyi SSIM ve en düşük MSE ve RMSE elde edildi.
Sonuç: Derin öğrenme modeli kullanılarak 68Ga-DOTATATE PET görüntülerinde atenüasyon düzeltmesinin kabul edilebilir doğruluğu, potansiyel 
olarak, hastaya yüksek radyasyon dozu uygulanmasına neden olan ek X-ışını görüntüleme yöntemlerine olan ihtiyacı ortadan kaldırabilir.
Anahtar kelimeler: Derin öğrenme, atenüasyon düzeltmesi, PET/BT, 68Ga-DOTATATE, tıbbi görüntüleme
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without the need for multiple imaging modalities such as 
MRI and CT (31,32). These studies employed different 
approaches and models in different areas of the body and 
with different radiopharmaceuticals. 

In the present study, we aimed to develop an optimal deep-
learning model for AC of whole-body 68Ga-DOTATATE PET 
images without relying on anatomical structures. 

Materials and Methods

Data Acquisition
68Ga-DOTATATE whole-body PET images of 118 patients 
from two imaging centers (59 images from center 1 and 
59 images from center 2) were retrospectively included 
in the study. This study was approved by the Research 
Ethics Committee of Tabriz University of Medical Sciences 
(approval no.: IR.TBZMED.REC.1401.584, approval 
date: 03.10.2022), which ensures adherence to ethical 
standards. The examinations were performed using 5-ring 
BGO-based PET/CT and 3-ring LSO-based PET/CT scanners. 
PET imaging was performed approximately 60 min after 
injection of 1.85 MBq 68Ga-DOTATATE per kilogram of 
patient weight. Before radiotracer injection, a low-dose CT 
scan was performed for AC and anatomical localization.

Data Preprocessing

From the 118 68Ga-DOTATATE PET images, 85% of the data 
from each center were considered for training the model, 
while 15% were used for external validation. In addition, 
15% of the training dataset was set aside for validation 
during the training process to evaluate the loss function 

and prevent overfitting. To reduce the dynamic range of 
image intensity, all PET images, including CTAC and NAC 
images, were converted to SUVs. In addition, to reduce the 
computational load, the image intensities were normalized 
by an empirical fixed value of 9 and 3, respectively.

Network Architecture

A deep learning algorithm based on the NiftyNet platform 
was utilized to generate PET/CT image AC using reference 
(PET-CTAC) images. NiftyNet is an infrastructure built 
upon the TensorFlow library and is designed to be used in 
various image analysis programs. It supports segmentation, 
regression, image generation, and reconstruction tasks. 
Therefore, it plays a vital and fundamental role in speeding 
up clinical work, including diagnostic and therapeutic 
procedures (33). The NiftyNet platform is a high-resolution 
residual neural network (HighResNet) (34). Our prepared 
network was composed of 20 residual layers. In the first 
seven layers, a 3x3x3 voxel kernel is employed to encode 
low-level image features, such as edges and corners. This 
kernel is dilated by factors of 2 and 4 in subsequent layers 
to extract mid- and high-level features. Then, a residual 
connection is used to link all two layers. In the residual 
blocks, each layer comprises an element-wise rectified 
linear unit (ReLU) and batch normalization. The structural 
details of the model are shown in Figure 1.

Implementation Details

In this study, we used the following parameters to train 
the network: lr=0.001, activation function=leakyReLU, loss 

Figure 1. Illustrates the intricacies of the architecture used in the ResNet model. This model is designed to take PET-non-AC images as input and 
generate PET-DLAC images as output
PET-non-AC: Positron emission tomography non attenuation correction, PET-DLAC: PET deep learning attenuation correction
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function=l2 loss, optimizer=Adam, decay factor=0.00001, 
batch size=12, queue length=480. The model was trained 
four times but was evaluated six times using test datasets 
with different matrix sizes.

Initially, a dataset comprising 50 samples from center 
1 with a matrix size of 192x192 was used to train the 
network. However, the test was separately conducted 
using 9 images from each center, namely, center 1 and 
2 test datasets for the first and second evaluations, with 
a matrix size of 192x192. Specifically, the matrix size of 9 
test datasets from center 2 was resized from 200x200 to 
192x192.

The second training was performed using only 50 data 
samples from center 2, with a matrix size of 192x92. The 
model was then tested using 9 datasets from both centers, 
i.e., center 1 and 2 test datasets for the third and fourth 
evaluations, with a matrix size of 192x192. For the third 
training phase, a total of 100 samples were used to train 
the network with 50 data from each center and a matrix 
size of 192x192. Additionally, 18 samples (9 datasets from 
each center) were used as the test dataset in the fifth 
evaluation. For the fourth training session of the network, 
a dataset of 100 samples from both centers was used, with 
a matrix size of 200x200. The matrix size of the 50 images 
from center 1 was resized from 192x192 to 200x200. 
Eighteen data points were utilized for network testing 
from both centers, as the sixth evaluation with a matrix 
size of 200x200.

Statistical Analysis

In this study, we performed statistical analyses to explore 
the relationship between the two variables. Specifically, 
we utilized the Pearson correlation coefficient to assess 
the type of connection, and the paired sample t-test to 
calculate the p-value. Additionally, we computed several 
evaluation metrics, including peak signal-to-noise ratio 
(PSNR), structural similarity index (SSIM), mean squared 
error (MSE), and root mean squared error (RMSE) for 
parameters such as the view signal-to-noise peak ratio, 
structural similarity, and average error rate.

Evaluation Strategy

The performance of the prepared model was assessed 
using various quantitative metrics, including quantitative 
metrics such as PSNR (Eq.1), MSE (Eq.2), RMSE (Eq.3), and 
SSIM (Eq.4). The metrics were computed by comparing 
the reference PET-CTAC images with the images generated 
by the network [PET-deep learning AC (PET-DLAC)]. The 
metrics are defined as follows:

(1)

(2)

(3)

(4)

where in Equation (Eq.) (1), R2 represents the maximum 
value of the PET-CTAC images as the reference image, 
represents the predicted image, and MSE denotes the 
mean squared error. In Eq. (2), “n” indicates the number 
of voxels inside the region of interest, “i”denotes the voxel 
index, pet

predict
 stands for AC PET images, and pet

ref 
stands 

for the reference PET-CTAC images.

In Eq. (4), μ
ref

 and μ
pre

 represent the mean values of the 
reference and predicted PET images, respectively, σ

ref
 and 

σ
pre 

are the variances of the pet
ref

 and pet
predict

 images, 
where σ

ref,pre
 represents their covariance. Additionally, c

1 

and c
2
 are two parameters with constants c_1 = 0.01 and 

c_2 = 0.02 in Eq. (3), respectively, to avoid division by very 
small values.

Furthermore, to illustrate the voxel-wise distribution of 
radiotracer uptake correlation between PET-CTAC and 
PET-DLAC images, a joint histogram analysis was performed 
for SUV values ranging from 0.1 to 18 using 200 bins.

Results 

The summary of the mean ± standard deviation of the 
image quantitative assessment parameters, including MSE, 
PSNR, RMSE, and SSIM, that were calculated between the 
SUV of PET-CTAC images as the reference and the 18 test 
datasets predicted by the model for the six evaluations, 
are demonstrated in Table 1. Although the values of these 
parameters in all evaluations were acceptable, there were 
some variations among them. Among all evaluations, 
the fourth evaluation obtained the highest PSNR value 
(52.86±6.6), indicating a better representation of image 
quality. The third evaluation showed the lowest PSNR 
(47.96±5.09), and the fifth evaluation had the lowest MSE 
value (0.000121±5.07xe-5) and RMSE (0.01072±0.002) 
value, indicating a smaller deviation from the reference 
images. The second evaluation demonstrated the highest 
MSE (0.0015±0.000103) and RMSE (0.0117±0.003). 
Additionally, the sixth evaluation showed the highest SSIM 
level (0.99±0.003) among all evaluations, while the second 
evaluation showed the lowest SSIM level (0.97±0.01) 
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compared to the reference images. A box plot comparing 
the parameters in the six evaluations is shown in Figure 
2. Furthermore, we calculated the maximum SUV (SUV

max
) 

difference between PET-CTAC and PET-DLAC images in 20 
superficial regions of interest (ROIs) and 20 deep ROIs in 

the axial section along the x-axis for each evaluation. For all 
evaluations p-value <0.05, Only for some evaluations where 
the original size of the images had been changed such as 
the sixth evaluation p-value >0.05. Additionally, the SUV

max 

difference was calculated for 5 ROIs within the tumor 

Table 1. The results of quantitative analysis of the predicted (PET-DLAC) and the reference (PET-CTAC) images that were 
calculated for 6 evaluations 

RMSEMSESSIMPSNREvaluation

0.0110±0.00350.00013±0.0001020.98±0.00548.22±6.161

0.0117±0.0030.0015±0.0001030.97±0.0149.53±6.812

0.0112±0.00370.00013 ±7.7xe-50.98±0.00947.96±5.093

0.01073±0.00330.000125±7.5xe-50.98±0.01952.86±6.64

0.01072±0.0020.000121±0.0000500.97±0.0250.5±6.525

0.0116±0.00290.00014±6.6xe-50.99±0.00349.89±5.686

PET-DLAC: Positron emission tomography deep learning attenuation correction, PET-CTAC: Positron emission tomography computed tomography-based attenuation correction, 
PSNR: Peak signal-to-noise ratio, SSIM: Structural similarity index, MSE: Mean square error, RMSE: Root mean square error

Figure 2. Boxplot displaying image quantitative metrics calculated between PET-CTAC, as the reference, and PET-DLAC, as the predicted image. The 
metrics include RMSE (A), MSE (B), PSNR (C), and SSIM (D) for six evaluations

PET-DLAC: Positron emission tomography deep learning attenuation correction, PET-CTAC: Positron emission tomography computed tomography-based attenuation 
correction, PSNR: Peak signal-to-noise ratio, SSIM: Structural similarity index, MSE: Mean square error, RMSE: Root mean square error
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volumes for each evaluation in the axial section along the 
y-axis, for the first, fourth, and fifth evaluations p-value 
<0.05. The coronal views of the NAC, PET-CTAC, and PET-
DLAC images, as well as the bias map between PET-CTAC 
and PET-DLAC images, are shown in Figures 3 and 4. The 
images represent the results of the four training sessions 
performed on the image represents the nine test data from 
two imaging centers. In all nine test data related to the 
four train sets, errors and underestimations were visually 
observed compared to the reference images. In particular, 
where the matrix size of images was set to 200x200, the 
rate of underestimation increased, and it should be noted 
that center 2 had data of the same matrix size. However, 

when the matrix size of 192x192, the underestimation 
was at its lowest level. Additionally, by reducing the size 
of the images, the number of errors observed in the lungs 
was significantly reduced; thus, images related to center 
2 in the second training set showed the lowest number 
of errors and underestimation. These images were created 
using only data from the same center and were resized 
to 192x192 pixels. In general, most images exhibited 
the highest amount of error in the lungs, while the liver, 
kidneys, and bladder images exhibited the highest amount 
of underestimation. The joint histogram in Figure 5 reveals 
that there was the highest voxel-wise similarity between 
PET-CTAC and PET-DLAC images in the first evaluation and 

Figure 3. Coronal view of NAC (A), PET-CTAC (B), PET-DLAC images (C), 
and the calculated bias map between PET-CTAC and PET-DLAC images 
(D) at the imaging center 1

PET-DLAC: Positron emission tomography deep learning attenuation correction, 
PET-CTAC: Positron emission tomography computed tomography-based AC, NAC: 
Non-attenuation correction

Figure 4. Coronal view of NAC (A), PET-CTAC (B), PET-DLAC images (C), 
and the calculated bias map between PET-CTAC and PET-DLAC images 
(D) at the imaging center 2 

PET-DLAC: Positron emission tomography deep learning attenuation correction, 
PET-CTAC: Positron emission tomography computed tomography-based AC, NAC: 
Non-attenuation correction
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first training within the data from center1, R²=0.95, and a 
curve slope of 1.10. In contrast, for the fourth evaluation 
related to the second train, the correlation coefficient 
remained high at R²=0.95, but the slope was slightly lower 
at 0.95. The lowest R² value of 0.82 was observed in the 
second evaluation, which is related to the first training. In 
this case, the training dataset was obtained from center 
1, and the test dataset was obtained from center 2. Both 
datasets were resized to match the size of the training 

dataset. In summary, joint histogram analysis revealed a 
significant level of similarity between PET-CTAC and PET-
DLAC images. 

Discussion

In this study, we used a deep learning model for the 
AC of whole-body 68Ga-DOTATATE PET images without 
the need for structural information. The model was 
also evaluated using training and test datasets from 

Figure 5. Joint histogram resulting from four network training sessions conducted using test datasets from the imaging center 1 (A) and 2 (B)
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two distinct imaging centers to assess and enhance its 
performance. In recent years, there has been a significant 
concern about AC in PET images using deep learning 
methods. Many studies have been conducted to generate 
pseudo-CT images using MRI (22,23,24,25,26,27) or 
NAC images (28,29) for AC purposes, but these methods 
require an additional modality as well as insufficient 
accuracy due to the large mismatch of images between 
the two modalities, and many artifacts and errors can 
be observed between them (31). Hence, there are many 
studies on PET image AC based on NAC images, without 
the need for structural images (CT or MRI). Shiri et al. (32) 
used a deep convolutional encoder-decoder (deep-DAC) 
network to calculate AC directly for 18F-FDG PET brain 
images. They achieved promising results on 18 images 
with a PSNR of 38.7±3.54 and SSIM of 0.988±0.006, 
respectively. Dong et al. (31) proposed 3D patch-
based cycle-consistent generative adversarial networks 
(CycleGAN) for AC of 18F-FDG PET whole-body (n=30) 
images and reported an average PSNR of 44.3±3.5 and 
NMSE of 0.72±0.34. Likewise, Mostafapour et al. (35) 
proposed the ResNet model for AC of 46 PET images with 
68Ga-PSMA and reported PSNR and SSIM 48.17±2.96 
and 0.973±0.034, respectively. However, to enhance 
and elevate the accuracy of outcomes, further studies 
are needed. In this study, we used the Resnet model 
to obtain 68Ga-DOTATATE PET whole-body images. Our 
proposed model was trained four times and evaluated six 
times using 18 test datasets from two imaging centers 
for 68Ga-DOTATATE PET images with different matrix 
sizes. In all 18 test data bias maps across six evaluations, 
high error rates were observed in the lungs, whereas the 
liver, bladder, and kidneys displayed a marked tendency 
toward underestimation. It is worth noting that the 
magnitude of these errors was substantially diminished by 
decreasing the dimensions of the images. Although the 
evaluations did not show significant differences, certain 
errors undoubtedly stemmed from the incomplete AC 
of the reference images, which cannot be overlooked. 
It may be advisable to use data from the same center to 
train the model at a specific center to achieve optimal 
AC. Additionally, the results indicate that reducing the 
image matrix size relative to the increase in size can 
improve model performance. From the viewpoint of 
image quality, although our model was not comparable 
with the CTAC approach, it ruled out the radiation dose 
from CT. However, our promising finding reveals the 
potential of the model for further exploration on larger 
datasets with possibly enhanced levels of accuracy in 
future studies. 

Conclusion

This study demonstrated the performance and feasibility of 
a deep learning model for AC in whole-body 68Ga-DOTATATE 
PET images. The results indicate the accuracy and high 
performance of the model, demonstrating its potential for 
effectively correcting attenuation in PET imaging. It appears 
that the model can reduce the reliance on CT images for 
AC of PET images, thereby minimizing additional radiation 
exposure to the patient.
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